

WUCHT- UND PROZESS-ÜBERWACHUNGSSYSTEME FÜR SCHLEIFMASCHINEN

MARPOSS

DITTEL wurde 1959 als Unternehmen zur Entwicklung und Serienfertigung von Luftfahrtelektronik gegründet. Heute, als Teil der Marposs-Gruppe, bieten wir unseren Kunden individuelle Möglichkeiten sowie Beratung im Bereich der Auswucht- und Prozessüberwachung um Anforderungen und Anwendungen erfolgreich umzusetzen - von der Planung bis zum Training. Auch nehmen wir Trends in den Märkten auf um diese wiederum, in enger Zusammenarbeit mit unseren Kunden, in die Entwicklung neuer Produkte einfließen zu lassen. Unser Netzwerk von hochwirksamen Verbindungen mit Industriepartnern, Universitäten und Forschungslaboratorien, sowie Arbeitsgruppen und industriellen Verbänden - die alle dazu dienen - damit Sie als Kunde, profitieren! DITTEL steht von jeher für Präzision, Qualität und Zuverlässigkeit.

Seit Juli 2012 ist die Dittel Messtechnik GmbH ein Teil der Marposs Gruppe. Unsere Kunden können nun vom weltweiten Netzwerk von Vertriebs- und Serviceniederlassungen in 25 Ländern profitieren.

MARPOSS, gegründet in 1952 von Mario Possati, ist der führende Lieferant für Präzisionsinstrumente für dimensionales und geometrisches Messen von mechanischen Teilen im Fertigungsbereich: Mess- und Überwachungssysteme für Werkzeugmaschinen, manuelle und automatische Systeme im Herstellerbereich und Montagelinien, Hard- und Software zur Datenerfassung und Prozessanalysen, Zubehör für zerstörungsfreie Prüfungen sowie Dichtigkeitsmesssysteme, mit vereinzelten Anwendungen in der Teilefertigung von Motoren, Antriebs - und Einspritzsystemen. Die Zentrale und das Hauptwerk sind ansässig in Bentivoglio (BO - Italien).

Mit Wuchtsystemen und Sensoren zur Prozessüberwachung, Steuerung von Schleifanwendungen und Abrichtprozessen wird die Effizienz und Sicherheit Ihrer Schleif- und Kombimaschinen gesteigert. Die breite Palette von Auswuchtköpfen und Sensoren eignen sich für Flach-, Aussenrund-, Innenrund-, Verzahnungs- oder auch Werkzeugschleifmaschinen und lösen somit die unterschiedlichsten Anwendungsprobleme. Bei der Verwendung von CBN- und Diamant-Schleifscheiben ist eine Überwachung unerlässlich.

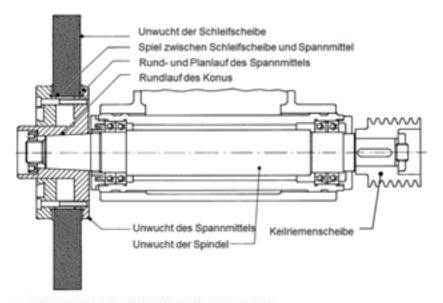
Je nach Art der Schleifmaschine, unabhängig ob neue Maschinen oder eine Nachrüstung von gebrauchten Maschinen, sind verschiedene Anwendungen möglich: Wuchten und Prozessüberwachung in Kombination mit Messsystemen, Schaltmessystemen oder auch anderen Überwachungssystemen (z.B. Kraftmessung, Strom-, Vibrationsüberwachung, etc.).

(In-Prozess-) Messung

Schaltmesssysteme

Art der Schleifmaschine	Wuchten	Sensorik	Monitoring	Schaltmes- systeme	In-Prozess- Messung
Aussenrundschleifmaschinen	•	•	•	•	•
Innenrundschleifmaschinen	•	•	•	•	•
Spitzenlosschleifmaschinen	•	•	•		•
Werkzeugschleifmaschinen	•	•	•	•	•
Rundschleifmaschinen	•	•	•	•	•
Double Disk-Schleifmaschinen	•	•	•	•	•
Honmaschinen	•	•		•	•
Verzahnungsschleifmaschinen	•	•	•	•	•

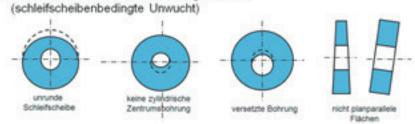
Funktionen	Sensitron 6	P1dAE	
	DITTEL		
WB Kanäle	-	-	
Ebenen	-	-	
AE-Eingang	2	2	T
AE Kanäle	1	2	
Wuchtalgorithmus	-	-	
Spektrum	-	-	
Vorwuchten (in Kombination mit einem Wuchtkopf)	-	-	
Betriebswuchten	-	-	
Acoustic Emission & Crash	•	•	
Hüllkurve	-	-	
Schnittstelle	statische I/O	statische I/O / RS232	
PC Software	-	-	
Schnittstelle Visualisierung	-	-	
Display	•	•	
Fernanzeige	-	-	


Funktionen	DS6000	DS7000
WB Kanäle	1	2
Ebenen	1 oder 2	2
AE-Eingang	1 oder 4	4
AE Kanäle	1	2
Wuchtalgorithmus	Trial & Error	determinitisch
Spectrum	•	-
Vorwuchten (in Kombination mit einem Wuchtkopf)	•	in Kombination mit P6000
Betriebswuchten	•	•
Acoustic Emission & Crash	•	•
Hüllkurve	•	-
Schnittstelle	I/O oder Profibus	I/O oder Profibus
PC Software	DSCC	USCC
Schnittstelle Visualisierung	Ethernet oder RS232	Ethernet
Display	-	-
Fernanzeige	RC GOCO	

P1dWB	DS5000
1	1 oder 2
1	1
1 (integriert im Wuchtkopf)	4
1	1
Trial & Error	Trial & Error
•	
•	•
-	•
•	•
-	•
statische I/O / RS232	statische I/O
-	(Option: WinControl für 32 Bit Systeme)
-	RS232
-	E AAN 8

P7	Blú
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2	2
1 oder 2	1 oder 2
4	2
1 oder 2	2
Trial & Error	Trial & Error
-	•
-	•
•	•
•	•
	-
statische I/O und Profibus	Profibus / Profinet
MHIS	Blú
Ethernet, USB	Ethernet / HDMI
-	-
B B B B B B B B B B B B B B B B B B B	5

Unwucht & Auswuchten


Unsere Wuchtsysteme zeichnen sich durch hohe Perfektion der mechanischen Wuchtköpfe und deren ausgereifte Auswuchtstrategie aus. Die Überwachung der Schwingungen des Bearbeitungsprozesses durch unsere Wuchtsysteme stellt sicher, dass die Unwucht frühzeitig erkannt und beseitigt werden kann. Dies gewährleistet eine gleichbleibend hohe Qualität der Werkstücke sowie hohe Standzeiten von Maschine und Werkzeug.

Warum muss die Schleifscheibe ausgewuchtet werden?

Optimal ausgewuchtete Schleifscheiben und Antriebselemente sind die Voraussetzung für gleichbleibend hohe Werkstückqualitäten und erhöhen die Standzeit der Schleifscheibe und die Lebensdauer der Schleifspindel. Rüstzeiten werden dadurch minimiert

Formfehler der Schleifscheibengeometrie

Wie kommt es zu einer Unwucht?

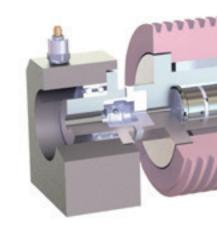
Jeder um eine feststehende Achse rotierende Körper besitzt eine Unwucht, die sich durch Vibrationen bzw. Schwingungen und Geräusche bemerkbar machen.

Unwuchten treten immer dann auf, wenn die Masse von rotierenden Körpern nicht symmetrisch verteilt ist. Speziell bei höheren Drehzahlen führt dies zu Vibrationen bis hin zu erhöhtem Verschleiß. Die Unwucht kann sowohl statisch als auch dynamischer Form sein. Meistens treten beide Formen gleichzeitig auf.

Unhomogenität der Schleifscheibe

(ungleichmäßige Schleifscheibenstruktur/ Dichteverteilung)

Wie funktioniert das Wuchten beim Schleifen?


Durch das Hochlaufen der Spindel und der Rotation der Schleifscheibe wird eine Unwucht erzeugt, die die Schleifscheibe zum Schwingen bringt. Bereits geringe Unwuchten der Scheibe oder auch der Spannvorrichtung erzeugen bei hohen Umfangsgeschwindigkeiten große Zentrifugalkräfte. Über den Schwingungsaufnehmer werden die Schwingungen in µm/sec angezeigt, vom Auswuchtsystem erkannt und verarbeitet. Durch verstellen der angebrachten Massegewichte (manuell oder elektromechanisch im Wuchtkopf) - sozusagen als Gegengewicht zur Unwucht, wird die Scheibe gewuchtet.

Der Auswuchtvorgang wird wiederholt sobald eine erneute Unwucht vom Schwingungsaufnehmer erfasst wird (eingestelltes Limit) oder die Schleifscheibe gewechselt/erneuert wird.

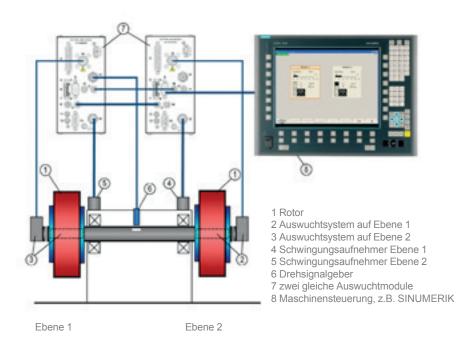
Vorteile

Die konstante Unwuchtüberwachung und stetiges Aus- bzw. Nachwuchten führt zu:

- gewünschten Werkstückoberflächen (ohne Rattermarken und Welligkeit)
- geringer Verschleiß der Spindellagerung
- beugt Materialermüdung und Versagen funktionswichtiger Teile vor
- die Maschinen- und Spindelstandzeit wird verkürzt
- geringe Abnutzung der Schleifscheibe
- weniger Abrichtvorgänge
- Maschine und Bediener sind besser geschützt

Trial & Error - Deterministisch

Speziell für den Einsatz an Präzisions-Werkzeugmaschinen entwickelt, messen die Auswuchtgeräte die Größe und Lage der Unwucht in zwei Ebenen und kompensiert diese während der Schleifpausen hochpräzise. Die elektromechanisch verstellbaren Wuchtmassen (Auswuchtköpfe) werden durch kontaktlose Energieübertragung versorgt und das Auswuchten erfolgt vollautomatisch bei Betriebsdrehzahl.

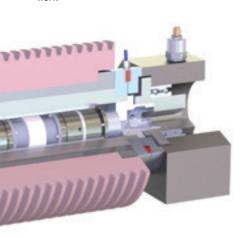

Dabei wird unterschieden zwischen dem "Trial & Error" Wuchtverfahren und dem "deterministischen" Wuchtverfahren.

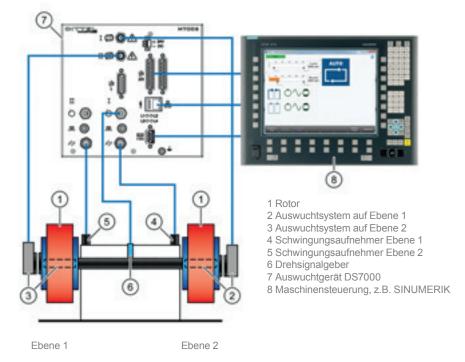
Beim Einsatz des 2-Ebenen Automatikwuchten wird die Unwucht auf zwei Ebenen gemessen und korrigiert, und führt somit zu einer Reduzierung der dynamischen Unwucht.

Trial & Error Wuchtverfahren

Durch Verfahren der Kompensationsmassen am Wuchtkopf, erkennt dass System, ob sich die Massen in die richtige Richtung verfahren und somit die Unwucht aufheben.

Die Elektronik übernimmt im Automatikmodus das Verfahren der Gewichte vollautomatisch bis hin zum erreichen der Abschaltschwellung bzw. zum kompletten Auswuchten der Scheibe.




Deterministisches Wuchtverfahren

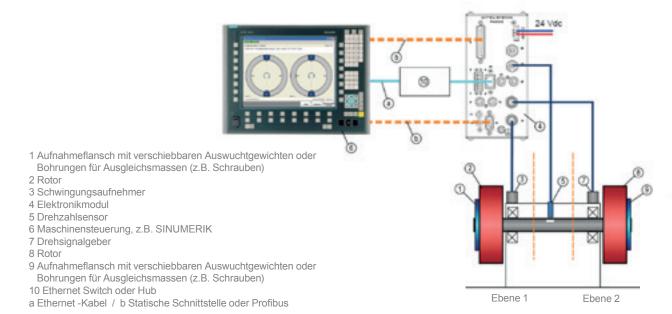
Neuartiges Wuchtverfahren mit Vorausberechnung der Gewichtsstellung bei den Wuchtköpfen zur gezielten Unwuchtkompensation.

Dank einer speziellen Elektronik im Wuchtkopf können an das DS7000 Gerät die Stellung der Gewichte übermittelt werden.

Somit sind gezielte Verfahrmöglichkeiten der Wuchtgewichte, sowohl im Stillstand als auch unter Rotation möglich.

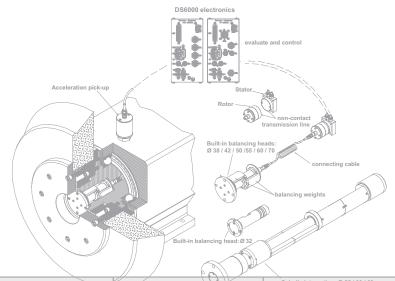
Betriebswuchtsysteme

Unwucht ist die häufigste Ursache von unzulässigen Maschinenschwingungen an Werkzeugmaschinen. Abhilfe verschaffen ausgewuchtete Werkzeuge und -spindeln. Beim "Vorwuchten" (Betriebsauswuchten) wird dabei die Unwucht in einer Ebene an der laufenden Maschine ermittelt und durch Anbringen oder verschieben von vordefinierter Massen in der Werkstückaufnahme gewuchtet.


Zur Berechnung verwenden die Geräte fest definierte Ausgleichsgewichte, die in einer frei einstellbaren Tabelle hinterlegt sind. Bei der Spreizwinkelmethode erfolgt die Kompensation durch verschieben der Gewichte auf einer 360° Skala.

Bei der Festortmethode in den P6000er Geräten werden 2-3 Gewichte kreisförmig auf gekennzeichneten Positionen (max. 24 Festorte) angebracht. Das Gerät bietet eine ständige Unwuchtüberwachung des Rotors bei Betriebsdrehzahl.

Auf der Maschinensteuerung, einem Windows-PC oder auch über die kundenspezifische Software-Oberfläche werden die Funktionen angezeigt, bedient und eingestellt. Für die Signale zur Steuerung steht eine Profibussowie eine serielle Schnittstelle zur Verfügung.


Kompensation der Unwucht durch Verschieben von zwei gleich schweren Auswuchtgewichten (Nutensteinen) auf errechnete Positionen. Kompensation der Unwucht durch Einschrauben von definierten Massen (z.B. Schrauben) an vorgegebenen Orten.

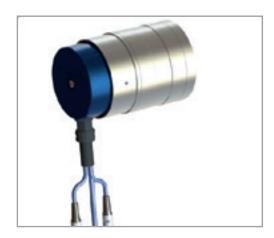
Automatische Wuchtsysteme

Die mechanischen Wuchtsysteme zur Erfassung, Überwachung und Kompensation der Unwucht bestehen aus einem Wuchtkopf, einem hochgenauen Schwingungsaufnehmer, einem Drehzahlaufnehmer und einem Elektronikmodul. Je nach Konstruktionsprinzip des Wuchtkopfes ist die Integration der Acoustic Emission Überwachung in Auswuchtfunktionen möglich und führt so zu einer zusätzlichen Optimierung der Anwendung.

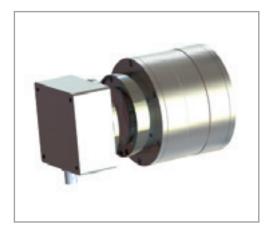
Die elektromechanischen Wuchtköpfe können sowohl in die Schleifspindel als auch mit kundenspezifischen Flanschen vor die Schleifscheibe montiert werden. Die Wuchtköpfe zeichnen sich durch eine hohe veränderbare Wuchtkapazität auf kleinem Bauraum aus und sind für höchste Drehzahlen geeignet. Die Signal- und Energieübertragung, die diese Systeme nahezu wartungsfrei macht, erfolgt kontaktlos. In den Wuchtkopf integrierbare Körperschallsensoren erhöhen die Funktionalität und somit den Kundennutzen um ein Vielfaches.

WB Elektronik		1-Ebene	Spindle integration: Ø 55 / 60 / 63 2-Ebenen
Automatik Wuchten	mechanisch, "Trial & Error"	P1dWB M5100M (M5100MA*) M6000** P7WB (P7 WB/AE*) Blú	2x M6000** P7WB (P7WB/AE*) Blú
"Dete	mechanisch, "Deterministic"		M7002 (MA7002)
	Hydro	H6000**	
Betriebswuchten		M5100 Software DS6000 Freischaltung: Ein-Ebenen- Wuchten	DS6000 Softwarefreischal- tung Vorwuchten

^{*} Auch mit AE-Funktion verfügbar (spezielle Hardware)


Übertragungssysteme für Anbauwuchtköpfe (FT)

"Retraction" - rückstellbare Kontakte (FTR)


Die Kontakte die den Strom zum Wuchtkopf leiten sind normalerweise offen und nur während des Wuchtzyklus geschlossen. Die einziehbaren Kontakte bieten wartungsfreie Leistung und eine lange Lebensdauer.

Kein Acoustic-Emission Signal übertragbar.

Angebaute Übertragung (AT)

Der angeschlossene Sender ist direkt mit dem Wuchtkopf verbunden. Die Signalübertragung erfolgt berührungslos. Einfach zu montieren und mit Acoustic-Emission Sensor und integriertem Drehsignalgeber möglich.

Kontaktlose Übertragung (CT / CG)

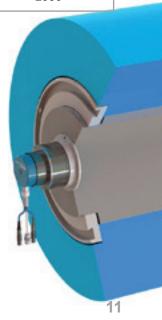
Die induktive Signalübertragung zum Wuchtkopf erfolgt kontaktlos, ist wartungsfrei und kann mit AE- und Drehsignalsensoren geliefert werden.

Elektromechanische Wuchtköpfe - Anbauwuchtköpfe (FT)

Einsatzbereich:

Alle Schleifmaschinen ohne automatischen Schleifscheibenwechsel

Merkmale:

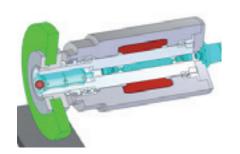

- Zum Nachrüsten geeignet
- Drehzahl bis 12.000 1/min
- Leichte Montage, da kompakte Bauform
- Keine Wartung
- AE-Sensor integrierbar
- Berührungslose Daten- und Energieübertragung

Die breite Palette von Auswuchtköpfen eignen sich für Flach-, Aussenrund-, Innenrund-, Verzahnungs- oder auch Werkzeugschleifmaschinen und lösen somit die unterschiedlichsten Anwendungsprobleme.

			Maximale Drehzahl			
Model	Außen Ø [mm]	Kapazität max. [cmg]	Retraction (FTR)	Kontaktl	oss/AE (CG)	Angebaute Über- tragung (AT)
					Elektronik	
			Marposs*	Marposs*	Dittel**	Dittel**
FT 50	50	320	-	-	12000	-
FT 70	70	550	-	-	11000	10000
FT 80	80	800	4000	10000	10000	10000
FT102	102	2.300	3000	5500	5500	5500
FT122	122	4.400	2000	4000	4000	4000
FT142	142	7.400	1700	2000	2000	2000

^{*} Die Marposs Elektronik ist zur Verwendung mit P1, P7 und Blú Systeme ausgelegt

^{**} Die Dittel Elektronik ist für den Einsatz mit DS5000 und DS6000 ausgelegt

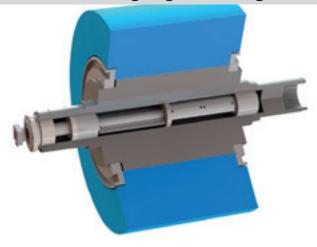

Elektromechanische Wuchtköpfe - Einbauwuchtköpfe (ST)

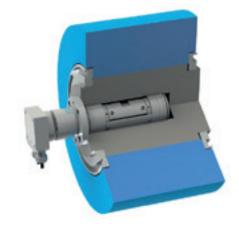
Einsatzbereich:

Alle Schleifmaschinen mit frontseitiger Spindelbohrung

Merkmale:

- Auswuchten mittig der Schleifscheibe
- Anordnung der Gewichte in mit zwei Gewichtsschalen oder momentenfrei möglich
- Drehzahl bis 30.000 1/min
- · Keine Störkontur an der Schleifscheibe
- Keine Wartung
- AE-Sensor integrierbar
- · Berührungslose Daten- und Energieübertragung




			maximale Drehzahl	
Model	Außen Ø [mm]	Kapazität max. [cmg]	Kontaktlos/AE (CG)	
			Ele	ektronik
			Marposs*	Dittel**
ST 24	24	25	-	24000
ST 28	28	50	-	20000
ST 30	30	80		30000
ST 32	32	100	-	19000
ST 38	38	400	20000	20000
ST 42	42	640	15000	15000
ST 50	50	1300	10000	10000
ST 55	55	1500	8500	8500
ST 60	60	2200	7500	7500
ST 70	70	3300	6000	6000
ST 81	81	8500	1400	1400

- * Die Marposs Elektronik ist zur Verwendung mit P1, P7 and Blú Systeme ausgelegt
- ** Die Dittel Elektronik ist für den Einsatz mit DS5000 und DS6000 ausgelegt

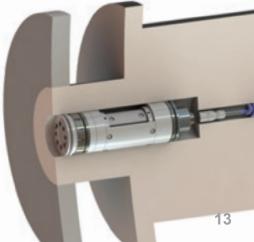
Model	Außen Ø [mm]	Kapazität max. [cmg]	Elektronik M7002/MA7002	
				max. Drehz.
ST 42	42	2x 640	kundenspezifisch	15000
ST 50	50	2x 1300	kundenspezifisch	10000
ST 55	55	2x 1500	kundenspezifisch	8500
ST 60	60	2x 2200	kundenspezifisch	7500
ST 70	70	2x 3300	kundenspezifisch	6000

Kontaktlose Übertragung & Montage

Kontaklose Übertragung

Die kontaktlose Übertragung kann am Spindelende oder direkt am Wuchtkopf vor der Spindel erfolgen. Die Übertragung ist wartungsfrei und kann mit einem integrierten Drehzahlsensor und einem Körperschallsensor erfolgen.

Montage


Für die Befestigung der Wuchtköpfe in der Spindel besteht die Möglichkeit, einer Flanschbefestigung oder eines Spannflanschsystems, um den Wuchtkopf in der Spindelbohrung festzuziehen.

Die vielseitigen Möglichkeiten des Flanschdesigns ermöglichen es, den Wuchtkopf bequem in einer kundenspezifischen Spindelbohrung zu befestigen.

P₁dWB

Das P1dWB ist das Einstiegssystem zum Schleifscheibenauswuchten mit zusätzlich integrierter Prozessüberwachung auf Schleifmaschinen. Das P1dWB-System kann Wuchtköpfe, die gleichzeitig auch einen eingebauten akustischen Sensor haben, sowohl als FT- als auch ST-Modelle verwalten. Das P1dWB-System ist nicht nur retro-kompatibel mit den elektronischen Einheiten E78 und E82, sondern führt auch die Vorauswuchtung und Spektralanalyse der Unwucht durch. Das Daten- und Einstellungsmanagement wird dank der mehrstufigen Login-Funktion sicher gestellt und die schnelle Behebung der Probleme wird durch die Auto-Diagnose-Funktion gewährleistet.

Funktionen	P1dWB
WB Kanäle	1
Ebenen	1
AE-Eingang	1 (integriert im Wuchtkopf)
AE Kanäle	n.a.
Wuchtalgorithmus	Trial & Error
Spectrum	•
Vorwuchten (in Kombination	
mit einem Wuchtkopf)	_
Betriebswuchten	n.a.
Acoustic Emission & Crash	•
Schnittstelle	static I/O
PC Software	n.a.
Schnittstelle Visualisierung	RS232
Display	4,3" LCD touch screen

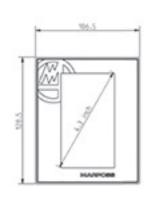
Das P1dWB-System erfüllt die modernen ergonomischen Kriterien und ist mit einem 4,3-Zoll-Touchscreen ausgestattet, der mit den für die mechanische Bearbeitung typischen aggressiven Umgebungen kompatibel ist.

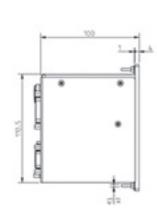
Die P1dWB-Elektronikeinheit ist in 3 Versionen erhältlich: Gehäuse, Stand-alone und Fernanzeige. Das Gerät kann außerhalb der Werkzeugmaschine installiert oder in das Bedienfeld integriert werden. Ein Software-Tool wird für Datensicherungs- und -wiederherstellungsvorgänge bereitgestellt und erleichtert die SW-Aktualisierung.

Technische Spezifikationen:

Stromversorgung: 24V DC

Anzeige: 4.3" touch-screen


PC Verbindung: RS232



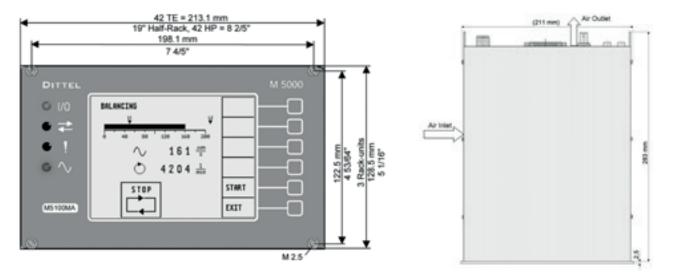
Optionen	Montage	Modul	Übertragungs- system	Wuchtkopf
P1dWB	mit Hutschiene oder Montageplatte	Kompaktgerät Einschub Externes Bedienfeld	Retraction CL Trial & Error	FT & ST

DS5000-System

Das M5100 kombiniert die Überwachungs- und Steuerelektronik, die für das elektromechanische Auswuchten und die Auswertung der Daten hochempfindlicher AE-Sensoren benötigt wird, um Schleif- und Abrichtprozesse zu optimieren. Das Gerät wird über das Menü auf einem beleuchteten, monochromen LCD-Monitor gesteuert.

Funktionen	DS5000 - System
WB Kanäle	1 (2)
Ebenen	1
AE-Eingang	up to 4
AE Kanäle	1 (2)
Wuchtalgorithmus	Trial & Error
Spectrum	•
Vorwuchten (in Kombination	
mit einem Wuchtkopf)	
Betriebswuchten	•
Acoustic Emission & Crash	•
Schnittstelle	static Interface
PC Software	WinControl für 32 Bit
Schnittstelle Visualisierung	RS232
Display	LCD

Grundfunktionen:


- · Vollautomatisches Auswuchten der Schleifscheibe
- Statische Schnittstelle (digitale I/O's) zur Maschinensteuerung
- Betriebswuchten
- Darstellung des Frequenzspektrums der Schleifspindel

Kundennutzen:

- Standzeitverlängerung einzelner Maschinenkomponenten (Spindel, Schleifscheibe etc.)
- Optimierung des Schleifprozesses. Führt zu verbesserter Werkstückqualität und höherer Wirtschaftlichkeit der Schleifmaschine

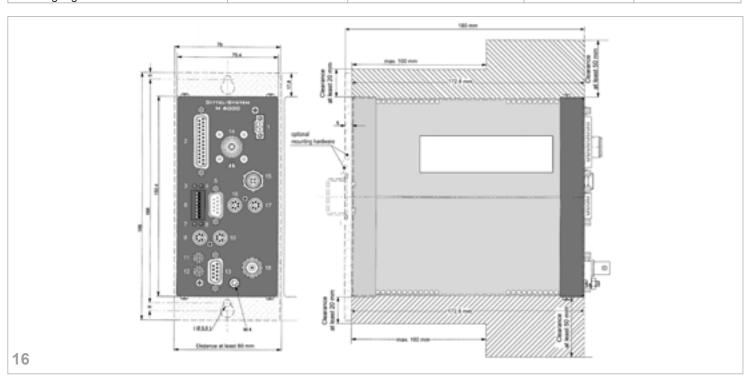
Optionen	Montage	Modul	Übertragungs- system	Wuchtkopf
Hardware M5000B Fernanzeig M5100M Wuchtgerä M5100M-2WB Doppelspin M5100MA Wucht- und schallüberv M5100MA-2WB Wucht- und schallüberv (Doppelspin	im Bedienpult, Körper- achung Körper- achung Schutzgehäuse	Hauptgerät incl. integriertem Display, oder als Blackbox-Gerät mit externer Fernanzeige M5000B	CL & AT Trial & Error	FT & ST

DS6000-System

Das M6000 ist die Steuerelektronik für elektromechanische Auswuchtsysteme. Das M6000 misst Größe und Lage der Unwucht der Schleifscheibe und kompensiert sie während der Schleifpausen unter Verwendung von elektromechanisch verstellbaren Wuchtmassen – hochpräzise, berührungslos und bei Betriebsdrehzahl.

Funktionen	DS6000- System		
WB Kanäle	1		
Ebenen	1 & 2		
AE-Eingang	in Kombination mit AE6000		
AE Kanäle	in Kombination mit AE6000		
Wuchtalgorithmus	Trial & Error		
Spectrum	Software Freischaltung		
Vorwuchten (in Kombination	Software Freischaltung		
mit einem Wuchtkopf)	Software Pleiscriaturig		
Betriebswuchten	Software Freischaltung		
Acoustic Emission & Crash	in Kombination mit AE6000		
Schnittstelle	statische Schnittstelle &		
Schilitistelle	Profibus		
PC Software	DSCC SW		
Schnittstelle Visualisierung	RS232 oder Ethernet		
Display	-		

Grundfunktionen:


- · Vollautomatisches Auswuchten der Schleifscheibe
- Profibus- und statische Schnittstelle zur Maschinensteuerung
- Kompatibel zum bisherigen M5000
- Verbesserte Auswuchtstrategie
- Serieninbetriebnahme von mehreren Modulen mit allen Parametern

Kundennutzen:

- Optimierung der Werkstückqualität
- Standzeitverlängerung einzelner Maschinenkomponenten (Spindel, Schleifscheibe etc.)
- Verbesserung der Wirtschaftlichkeit der Schleifmaschine

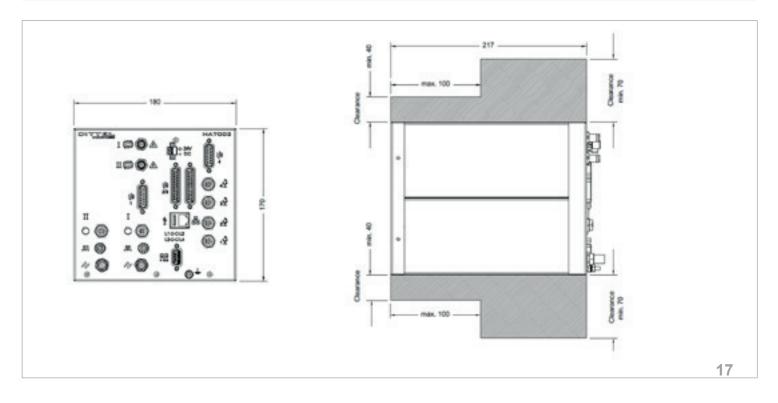
Optionen	Montage	Modul	Übertragungs- system	Wuchtkopf
M6000 mit RS232				
M6000 mit Ethernet		Blackbox-Gerät mit Visualisie- rung über das WINDOWS		
M6001, RS232 für aktive	mit DIN-Hutschiene	basierte Maschinendisplay	CL & AT	FT & ST
Schwingungsaufnehmer	oder Montageplatte	, ,	Trial & Error	ΓΙαδί
M6001, Ethernet für aktive		oder mit externer Fernanzeige RC6000 / PC6000		
Schwingungsaufnehmer				

DS7000-System

Speziell für den Einsatz an Präzisions-Werkzeugmaschinen entwickelt, misst das neue Auswuchtgerät M7002 die Größe und Lage der Unwucht in zwei Ebenen und kompensiert diese während der Schleifpausen hochpräzise. Die elektromechanisch verstellbaren Wuchtmassen (Auswuchtköpfe) werden durch kontaktlose Energieübertragung versorgt und das Auswuchten erfolgt vollautomatisch bei Betriebsdrehzahl.

Funktionen	DS7000- System
WB Kanäle	2
Ebenen	2
AE-Eingang	bis zu 4
AE Kanäle	2
Wuchtalgorithmus	Deterministisch
Spectrum	-
Vorwuchten (in Kombination	
mit einem Wuchtkopf)	-
Betriebswuchten	in Kombination mit P6001
Acoustic Emission & Crash	•
Schnittstelle	Profibus
PC Software	USCC
Schnittstelle Visualisierung	Ethernet
Display	_

Grundfunktionen:


- Zur Verfügung stehen vordefinierte, individuell einstellbare Benutzerlevels
- In Kombination mit DS6000-Modulen möglich
- Einbindung der USCC Software über Active-X möglich

Kundenutzen:

- Neuer determisistischer Wuchtalgorithmus
- Gerät überwacht die Wuchtköpfe direkt, sowohl im Stillstand als auch unter Rotation.

	Optionen	Montage	Modul	Übertragungs- system	Wuchtkopf
M7002 MA7002	2-Ebenen-Wuchten 2-Ebenen-Wuchten mit Körperschall- überwachung (2x)	mit DIN-Hutschiene oder Montageplatte	Blackbox-Gerät mit Visualisierung auf dem Maschinendisplay	CL Deterministisch	ST

Hydro-Wuchtsystem

Einbaumöglichkeiten:

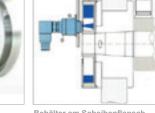
- Ausgleichbehälter vor der Schleifscheibe, Düseneinheit in der Schutzhaube montiert
- Ausgleichbehälter hinter der Schleifscheibe, Düseneinheit an Schleifspindelgehäuse montiert
- Wuchtkammern im Schleifscheibenflansch integriert, Düseneinheit an Schleifspindelgehäuse oder Schutzhaube montiert

Einsatzgebiet:

- Bei allen Schleifmaschinen mit automa-Schleifscheibenwechsel
- Bei allen Schleifmaschinen, bei denen mittenfreies Wuchten erforderlich ist

Vorteile:

- Gut geeignet zum Nachrüsten
- Flexible Bauweise
- Drehzahl bis 20.000 1/min



Das Hydro-Auswuchtsystem ist universell an beliebigen Schleifmaschinen einsetzbar. Der Ausgleich der Unwucht erfolgt durch Einspritzen von Kühlmittelflüssigkeit in 3 oder 4 Wuchtkammern, die in einem Ausgleichbehälter oder direkt im Schleifscheibenflansch integriert sind.

Der Ausgleichbehälter lässt sich in verschiedensten Bauformen kundenspezifisch an die jeweilige Maschine anpassen und eignet sich deswegen auch optimal zum Nachrüsten von älteren Maschinen, die bisher kein automatisches Auswuchtsystem integriert

Behälter am Scheibenflansch

flansch integriert

Hydro-Retrofit HBA4000R

Das Hydro-Wuchtsystem HBA4000R ist der Nachfolger von dem seit Jahrzehnten weltweit eingesetzten Gerät HBA3001 und HBA4000 im 19"-Gehäuse. Primar entwickelt für die Verwendung an Präzisions-Schleifmaschinen, übernimmt das HBA4000R die Erkennung und Behebung der Unwucht . Schnell und präzise wird die Unwucht durch einspritzen von Flüssigkeiten in einen Ausgleichsbehälter mit 3- oder 4 Kammern beseitigt. Dieser Behälter wird direkt am Rotor/ Scheibenflansch angebracht oder kann sogar in den Scheibenflansch integriert werden - das Wuchten erfolgt vollautomatisch, kontaktlos und bei Betriebsdreh-

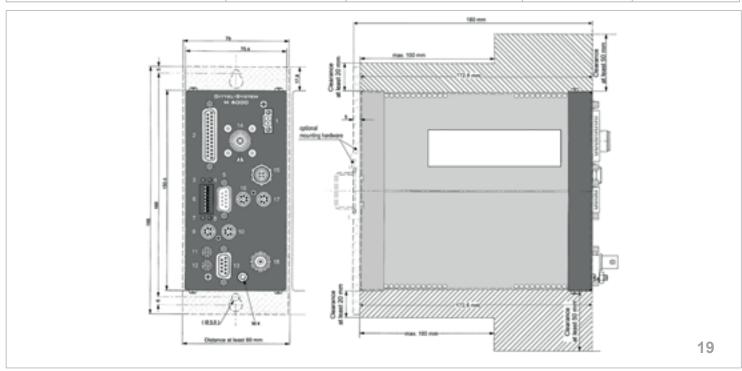
Einfacher Retrofit durch 19" Gehäuse

H6000

Das H6000 ist die Steuerelektronik für Hydro-Wuchtsysteme. Dieses Auswuchtsystem ist speziell für den Einsatz an Präzisions-Schleifmaschinen entwickelt, die kein Auswuchtsystem im Zentrum der Schleifspindel einsetzen können. Das H6000 misst in den Schleifpausen fortlaufend die Größe und Lage der Unwucht der Schleifscheibe und errechnet aus diesen Werten Größe und Lage des Kompensationsgewichts. Zur Kompensation injizieren dann Einspritzdüsen abwechselnd die Kühlmittelflüssigkeit in eine der Kammern des Ausgleichsbehälters – hochpräzise, berührungslos, vollautomatisch und bei Betriebsdrehzahl.

Funktionen	H6000- System
WB Kanäle	1
Ebenen	1
AE-Eingang	in Kombination mit AE6000
AE Kanäle	in Kombination mit AE6000
Wuchtalgorithmus	Trial & Error
Spectrum	Software Freischaltung
Vorwuchten (in Kombination mit einem Behälter)	Software Freischaltung
Betriebswuchten	Software Freischaltung
Acoustic Emission & Crash	in combination with AE6000
Schnittstelle	statisches I/Os & Profibus
PC Software	DSCC SW
Schnittstelle Visualisierung	RS232 oder Ethernet
Display	-

Grundfunktionen:

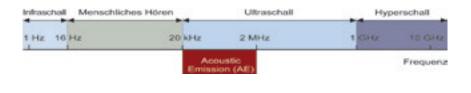

- Vollautomatisches Auswuchten der Schleifscheibe durch Einspritzen von Kühlmittelflüssigkeit in einen Ausgleichbehälter
- Profibus und statische Schnittstelle zur Maschinensteuerung
- Verbesserte Auswuchtstrategie
- Serieninbetriebnahme von mehreren Modulen mit allen Parametern

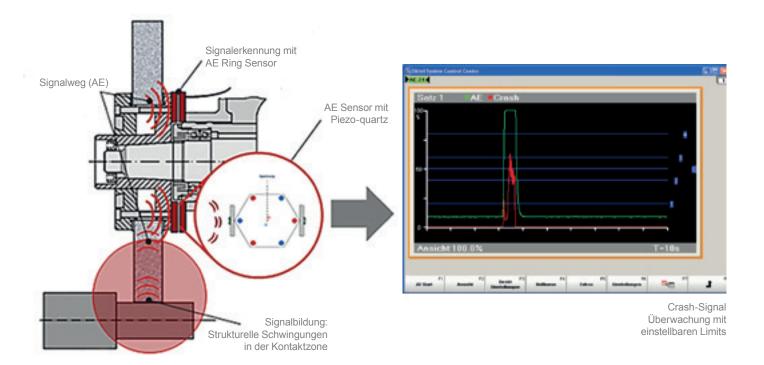
Kundennutzen:

- Optimierung der Werkstückqualität
- Standzeitverlängerung einzelner Maschinenkomponenten (Spindel, Schleifscheibe etc.)
- Verbesserung der Wirtschaftlichkeit der Schleifmaschine

Optionen	Montage	Modul	Übertragungs- system	Ausgleichs- behälter
H6000 mit RS232				
H6000 mit Ethernet		Blackbox-Gerät mit Visualisie-		
H6001, RS232	mit DIN-Hutschiene	rung über das WINDOWS	Düseneinheit	3- / 4- Kammern
für aktiven Schwingungsaufnehmer	oder Montageplatte	basierte Maschinendisplay		im Ausgleichs-
H6001, Ethernet		oder mit externer Fernanzeige	Trial & Error	behälter/Tank
für aktiven Schwingungsaufnehmer		RC6000 / PC6000		

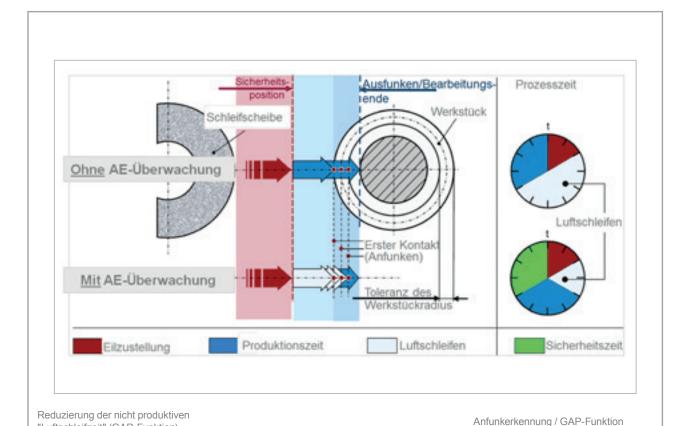
Acoustic Emission (AE): Background


Infolge des Spanabtrages beim Schleifen eines Werkstückes entsteht in den angrenzenden Maschinenelementen Körperschall – Acoustic Emission – der zu messbaren Schwingungen führt.


Diese Schwingungen können durch die AE-Sensoren erfasst und von Diagnose- und Monitoringsystemen zeitnah analysiert, bewertet und visualisiert, sowie Werkstückqualität und der Verschleißzustand der eingesetzten Werkzeuge beurteilt werden. Die Kenntnis der auftretenden Fehler entscheidet über Maschinenstillstand oder Maschinenbetrieb. Dementsprechend hoch sind die Anforderungen an die eingesetzten Sensoren. Damit die fertigungstechnischen Potenziale von Werkzeugmaschinen voll ausgeschöpft und die Prozesskosten systematisch reduziert werden können, bieten wir eine Vielfalt hochempfindlicher statischer oder rotierender AE-Sensoren an, die bereits geringste Signalabweichungen erfassen. Die Signalübertragung bei rotierenden AE-Sensoren erfolgt berührungslos. Das hervorragende Signal-/Rauschverhältnis der AE-Sensoren gewährleistet höchste Prozesssicherheit.

Acoustic Emission:

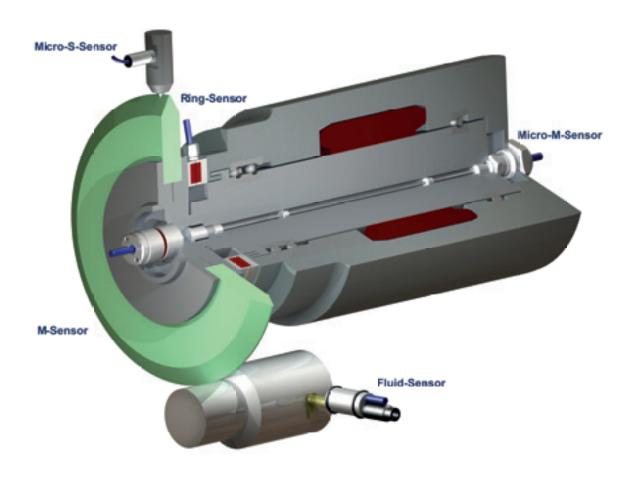
Als Nebeneffekt des Zerspanungsprozesses werden an der Kontaktstelle zwischen Werkzeug und Werkstück Schwingungen erzeugt, die als Schall emittiert werden. Die Schallwellen besitzen und transportieren kinetische Energie, die im Werkstoff Spannungsänderungen induzieren und infolgedessen zu kurzzeitigen plastischen Verformungen, Gleitvorgängen und Verschiebungen im Nanometerbereich führen.

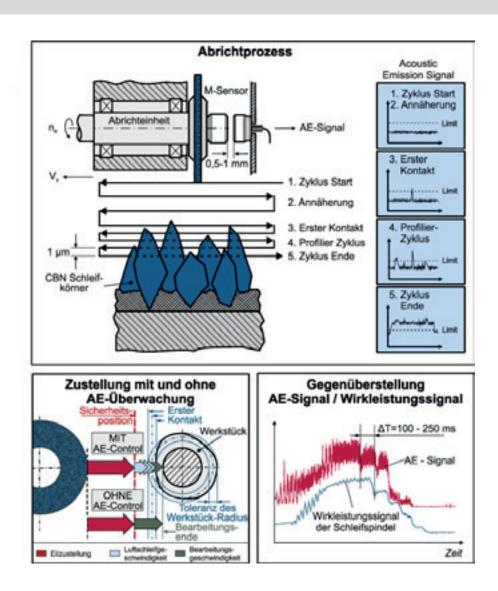

Durch die dynamischen Verschiebungen werden hochfrequente Schwingungen, Acoustic Emissions (AE), generiert, die außerhalb der unmittelbaren Kontaktstelle zwischen Werkzeug und Werkstück – auf der Basis des Piezoeffektes detektierbar sind und als elektrische Spannungsänderung gemessen werden können. Die Acoustic Emissions (nach dem Medium, in dem sie sich ausbreiten auch als Körperschall bezeichnet) liegen oberhalb des hörbaren Spektrums im Ultraschallbereich. Die so gewonnenen elektrischen Signale enthalten die für den Zerspanungsprozess charakteristischen Frequenzanteile und Schallamplituden und eignen sich daher zur Prozessüberwachung.

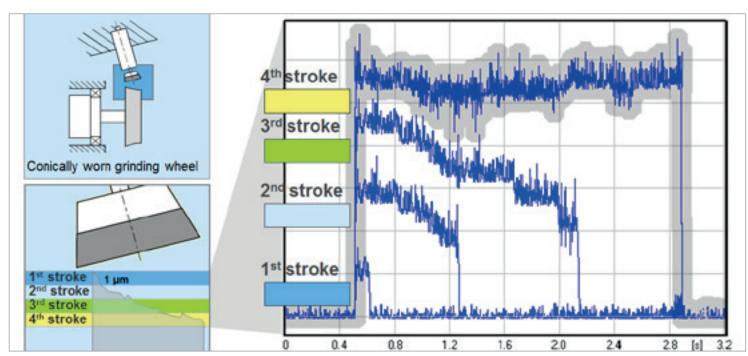
Einsatzpotentiale

"Luftschleifzeit" (GAP-Funktion)

Schleifen & Abrichten

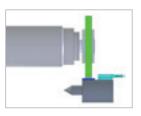

Schleifprozessüberwachung nahe am Geschehen


Um Körperschallsignale möglichst nah am Schleifprozess aufnehmen zu können, ist es wichtig, den richtigen AE-Sensor für die Anwendung zu finden. Gerade bei hohen Drehzahlen ist es besonders wichtig, die Acoustic Emission Signale direkt am Schleifprozess aufzunehmen um nicht durch andere Störgeräusche (z.B. Lagergeräusche) die Nutzsignale zu verfälschen.


Je nach Anwendung und Maschine haben wir ein breites Spektrum an AE-Sensoren im Programm die an oder in die Spindel verbaut werden können. Auch wenn die Sensoren nicht direkt auf der Schleifspindel Platz finden, ist es möglich die Signale für die Prozessüberwachung über die Werkzeugspindel oder einen Fluidsensor aufzunehmen. Auch für die unterschiedlichen Abrichter- und Abrichtspindeln gibt es passende Sensoren.

Nur mit einem passenden und für die Anwendung ausgelegten AE-Sensor können alle Vorteile ausgenutzt werden. Um die bestmögliche Prozessauslastung zu erreichen, ist es wichtig den ersten Kontakt zwischen Schleifscheibe und Werkstück zu erkennen, die Zeit zu verkürzen indem schnell zugestellt ("Luftschleifen" reduziert) und damit schnellstmöglich die maximale Schleifleistung erreicht wird. Die AE-Kurve die auch mit einer Hüllkurve erweitert werden kann, unterstützt Sie dabei den Prozess noch weiter zu analysieren. Vermeiden Sie zudem größere Schäden an Werkzeug oder Spindeln, durch die Crash-Control Überwachung. Ein Kollision wird schnellstmöglich erkannt und kann zum Abschalten der Maschine führen.

Verbessern Sie die Prozessüberwachung und haben Sie somit ein Auge darauf, bevor sich am Schleifprozess etwas verändert, verbessern Sie Ihren Prozess, steigern Sie die Qualität und reduzieren Sie Ausschuss in Ihrer Produktion.



Mit der Hüllkurvenfunktion wird der Abrichtprozess so lange durchgeführt, bis sich das Signal in der eingelernten Hüllkurve befindet

Statische AE-Sensoren

Varianten	Abmessungen [mm]	Befestigung/ Gewinde	Kontaktlose Signalüber- tragung	Aktive Ver- stärkung möglich
S - Sensor	ø 21 x 24.5	M 6		
Mini-S Sensor	ø 15 x 23	M 4		
Mini-S Sensor MAG	ø 21 x 34.5	Magnet		
Micro-S-Sensor	ø 8 x 20	М 3		
SF-Sensor	45 x 30 x 17 D 45 x 30 x 15 M	2 x M 5		
Mini-SF-Sensor	29,5 x 20 x 10			
Magnet Sensor	ø 40 x 40	Magnet		

Varianten:

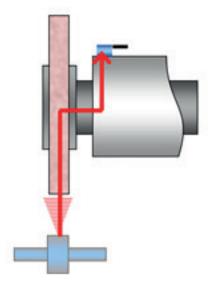
- S-Sensor
- · Mini-S-Sensor
- SF-Sensor
- Magnetsensor
- Micro-S-Sensor

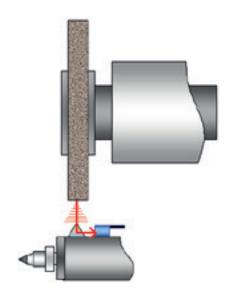
Einsatzbereich beispielsweise:

Mit stehenden Abrichtwerkzeugen:

- Einkornabrichten
- Abrichtfliese

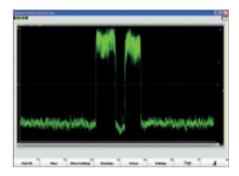
Geeignete Sensorposition:


- am Werkstückspindelstock
- am Reitstock
- · am Schleifspindelgehäuse


Zusatzfunktionen:

 Abrichtüberwachung und Schleifprozessüberwachung

Kundennutzen:


- Einfache Montage
- Hohe Signalqualität

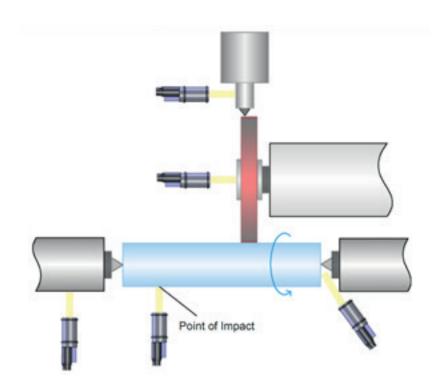
Fluid AE-Sensor

Die Übertragung der AE erfolgt entgegen der Strömungsrichtung eines freien Flüssigkeitsstrahls der maschineneigenen Betriebskühlschmierstoffanlage (Kühlemulsion oder Schleiföl). Durch die elektrische und akustische Entkopplung des AE-Fluid-Sensors von der Werkzeugmaschine werden maschineneigene Stör- und Nebengeräusche wirkungsvoll unterdrückt.

AE-Signal beim Abrichten mit AE-Fluid-Sensor

Einsatzbereich:

 Abricht- und Prozessüberwachung an rotierenden und statischen Ankoppelflächen


Signalaufnahme:

- am Werkstück
- am Werkzeug
- · am Werkstückspindelstock
- · an der Werkstückhalterung

Kundennutzen:

- · Einfache Montage
- Nachrüstung möglich
- Unempfindlich gegen maschineneigene elektromagnetische Störungen
- Direkter Anschluss an unsere AE-Auswertesysteme ohne zusätzliche Elektronik

Varianten	Abmessungen [mm]	Befestigung/ Gewinde	Kontaktlose Signalüber- tragung	Aktive Ver- stärkung möglich
Fluid Sensor	ø 15 x 30	Montageschelle		

Vorschläge für Sensorpositionen für Schleif- oder Abrichtanwendungen

Rotierende AE-Sensoren

M- und Mini-M-Sensorik

Einsatzbereich beispielsweise:

Abrichten mit drehenden Abrichtwerkzeugen:

· Formrolle oder Profilrolle

Sensorposition:

- auf der Schleifscheibe
- auf der Abrichtscheibe

Zusatzfunktionen:

 Abrichtüberwachung und Schleifprozessüberwachung

Kundennutzen:

- Einfache Montage
- Stör/Nutzsignal-Verhältnis optimal durch Messung auf der rotierenden Welle

Micro-M-Sensorik

Einsatzbereich beispielsweise:

Abrichten mit drehenden Abrichtwerkzeugen:

Formrolle oder Profilrolle

Sensorposition:

- · in der Schleifspindel
- in der Abrichtspindel

Zusatzfunktionen:

 Abrichtüberwachung und Schleifprozessüberwachung

Kundennutzen:

 Hohe Signalqualität durch direkten Kontakt mit Abrichtoder Schleifwerkzeug

	Abmessungen [mm]	Befestigung/ Gewinde	Kontaktlose Signalübertragung	Aktive Verstärkung möglich
Mini-M - Rotor	ø 14 x 9.6	M 4	•	
Mini-M - Stator	ø 20 x 14	Been	•	
M Sensor (Rotor)	ø 21 x 14.2 ø 25 x 11,5	M 6	•	•
M Empfänger (Stator)	ø 21 x 18 ø 25 x 23			Alfanor Co.
Micro-M Rotor	kundenspezifisch	kundenspezifisch		
Micro-M Stator	kundenspezifisch	kundenspezifisch		

Ring-Sensor

Einsatzbereich beispielsweise:

Abrichten mit drehenden Abrichtwerkzeugen:

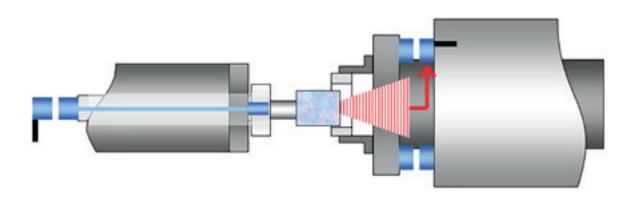
Formrolle oder Profilrolle

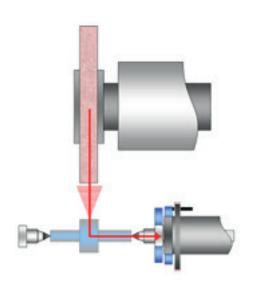
Sensorposition:

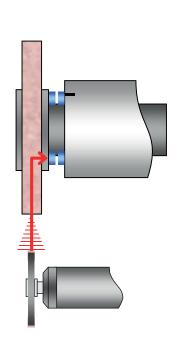
- auf dem Spannfutter
- auf der Schleifscheibe
- auf der Abrichtscheibe

Zusatzfunktionen:

 Abrichtüberwachung und Schleifprozessüberwachung


Kundennutzen:

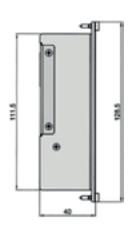

Höchste Signalqualität durch direkten Kontakt mit Abrichtoder Schleifwerkzeug



Varianten	Abmessungen [mm]	Befestigung/ Gewinde	Kontaktlose Signalüber- tragung	Aktive Ver- stärkung möglich
Ring-Rotor	kundenspezifisch	kundenspezifisch	•	•
Ring-Stator	kundenspezifisch	kundenspezifisch	•	•

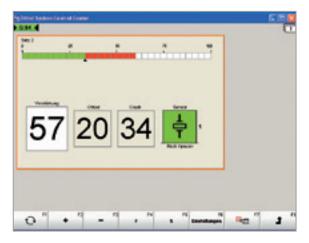
Sensitron 6

Das Sensitron6 ist eine AE-Auswerteelektronik, die den Bediener bei der Überwachung und Sicherung der komplexen Vorgänge beim Schleifen unterstützt. Einfach in die Maschinensteuerung zu integrieren, wertet die leistungsfähige Elektronik zur Schleifprozessüberwachung und Prozesssteuerung die Signale der hochempfindlichen AE-Sensoren aus. Zuverlässige Erkennung der ersten Berührung zwischen Schleifwerkzeug und Werkstück, des Anfunkens und automatische Umschaltung der Vorschubgeschwindigkeiten ermöglicht die Reduzierung der Luftschleifzeiten ohne Qualitätsverlust. Eine integrierte Crash-Überwachung des Arbeitsraumes erweitert vorteilhaft die maschineneigenen Sicherheitsmaßnahmen und trägt zur Minimierung kollisionsbedingter Ausfallkosten bei. Die Bedienung der Auswerteelektronik sowie die Auswahl der Sensoren erfolgt entweder manuell durch Drucktasten oder vollautomatisch, kontrolliert von der Maschinensteuerung. Die Darstellung des AE-Signals erfolgt über eine 30-stellige LED-Balkenanzeige.

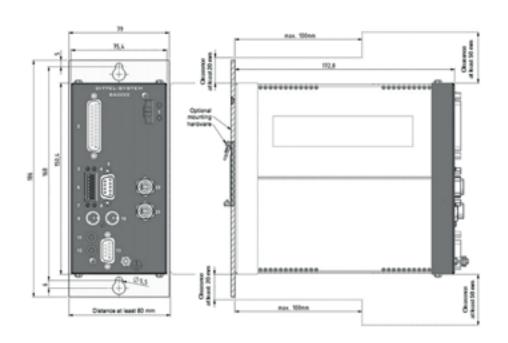


Funktionen	Sensitron 6
AE-Eingang	2
AE Kanäle	1
AE Signalansicht	LED's
Schleifprozessüberwachung	•
Abrichtüberwachung	•
Kontakterkennung & Reduzierung	
Luftschleifen	•
Crash-Überwachung	•
Schnittstelle	I/O seriell
PC Software	-
Hüllkurvenfunktion	-
Schnittstelle Visualisierung	-
Display	LED's

Optionen	Montage	AE-Signalansicht	AE-Sensor
Sensitron 6	im Bedienpult	eigenständiges Gerät mit LED-Anzeige	alle passiven AE-Sensoren

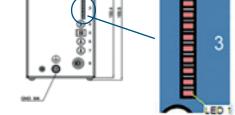

S6000

Bei Automatisierung von Schleif- oder Abrichtprozessen ist es unerlässlich, dass der Vorgang sicher abläuft und eine konstante Werkstückqualität produziert wird. Ein Beitrag zur Steigerung der Prozesssicherheit trägt die Körperschallüberwachung (AE) bei.


Visualisierung des AE-Signales erfolgt beim S6000 auf der Windows-basierten Maschinensteuerung mit optischer LED-Leiste.

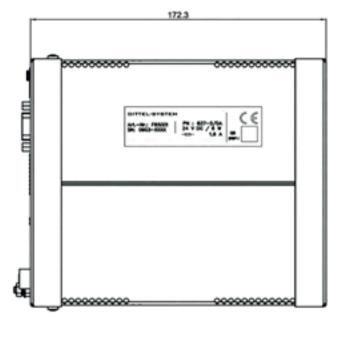
Funktionen	S6000
AE-Eingang	2
AE Kanäle	1
AE Signalansicht	LED view
Schleifprozessüberwachung	
Abrichtüberwachung	
Kontakterkennung & Reduzierung	
Luftschleifen	_
Crash-Überwachung	
Schnittstelle	statische I/Os & Profibus
PC Software	DSCC
Hüllkurvenfunktion	-
Schnittstelle Visualisierung	RS232
Display	-

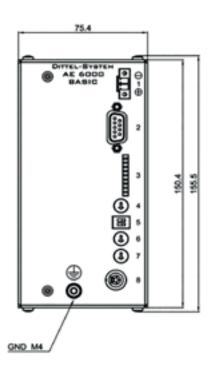
Optionen	Montage	AE-Signalansicht	AE-Sensor
S6000	mit DIN-Hutschiene oder Montageplatte	Blackbox-Gerät mit Visualisie- rung über das Windows basierte Maschinendisplay oder mit externer Fernanzeige PC6000	alle AE-Sensoren



AE6000 Basic

Konstante Spitzenqualität, Automatisierung, Erhöhung der Produktivität, Verringerung von Stillstandzeiten – das sind die Anforderungen für Fertigungsprozesse, die mit hochempfindlicher Sensorik und intelligenten Auswertegeräten gelöst werden können.


Bei Schleif- oder Abrichtprozessen ist das Körperschall-Signal (Acoustic Emission – AE) dafür ein sicheres und geeignetes Auswertekriterium. Das AE6000 Basic besticht mit seiner einfachen Bedienung die vollau-


tomatisch, gesteuert von der Maschinensteuerung erfolgt.

Funktionen	AE6000 Basic
AE-Eingang	2
AE Kanäle	1
AE Signalansicht	-
Schleifprozessüberwachung	•
Abrichtüberwachung	•
Kontakterkennung & Reduzierung Luftschleifen	
Crash-Überwachung	
Schnittstelle	9polige Schnittstelle
PC Software	-
Hüllkurvenfunktion	-
Schnittstelle Visualisierung	-
Display	-

Optionen	Montage	AE-Signalansicht	AE-Sensor
AE6000 Basic	mit DIN-Hutschiene oder Montageplatte	-	alle AE-Sensoren

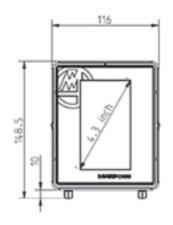
P1dAE

P1dAE ist ein einfach zu bedienendes Überwachungssystem für Schleifmaschinen, dessen Bedienung auf der Überprüfung akustischer Signale beruht.

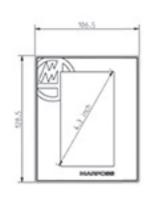
Das P1dAE-System ist in der Lage, verschiedene Anforderungen zu erfüllen, wie z.B. die kontinuierliche Kontrolle der Schleif- und Abrichtprozesse, und minimiert die Schäden im Falle einer Kollision im Arbeitsbereich. Bis zu zwei akustische Sensoren, die gleichzeitig verwaltet werden, können angeschlossen werden, und es stehen vier Logikkanäle zur Verfügung, um das Signal zu analysieren. Der Pegel des empfangenen Signals wird überprüft und kann auf dem graphischen Display mit 4,3 "-Touchscreen abgelesen werden, kompatibel mit aggressiven Umgebungen, typisch für mechanische Bearbeitung. P1dAE arbeitet in einem Frequenzintervall zwischen 4 KHz und 1000

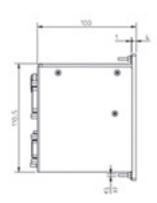
KHz, die Auto-Setup-Funktion wird verwendet, um die am besten geeignete Bandbreite auszuwählen. P1dAE ist ein autonomes System, das in der Gehäuse-Version für den Maschinenschrank oder der Fernanzeige verfügbar ist.

Ein SW-Tool wird zur Datensicherung und zur Wiederherstellung von Operationen sowie zur Aktualisierung der SW bereitgestellt.


Technische Spezifikationen:

- Stromversorgung: 24V DC
- Zwei Acoustic Sensors gleichzeitig
- Bandbreite: bis zu 1000 KHz
- Auto Setup f
 ür die verbesserte Bandbreitenwahl

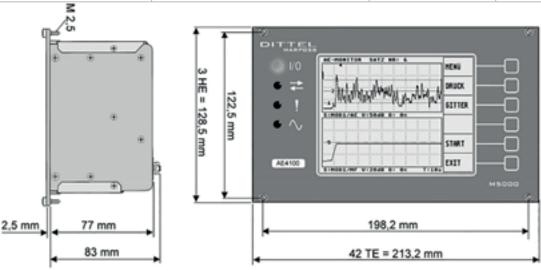

Funktionen	P1dAE
AE-Eingang	2
AE Kanäle	1
AE Signalansicht	curve
Schleifprozessüberwachung	•
Abrichtüberwachung	•
Kontakterkennung & Reduzierung Luftschleifen	•
Crash-Überwachung	•
Schnittstelle	static I/O
PC Software	n.a.
Hüllkurvenfunktion	-
Schnittstelle Visualisierung	-
Display	4,3" LCD touch screen



Optionen	Montage	Module	AE-Ansicht	AE-Sensor
P1dAE	mit Hutschiene oder Montageplatte	Kompaktgerät Einschub Externes Bedienfeld	AE Kurve	alle AE-Sensoren

AE4100-System

Bei Schleifmaschinen mit Maschinensteuerungen ohne Bildschirm ist die Serie 4100 für die Prozessvisualisierung und -überwachung optimal geeignet. Mit dem Einsatz dieses Acoustic Emission-Systems lässt sich der Schleif- und Abrichtprozess optimieren, die Luftschleifzeit reduzieren sowie eine Kollision Scheibe - Werkstück überwachen. Die Einstellung der Geräte ist menügeführt (in 5 Sprachen); Einstellungen und Signale werden an einem beleuchteten, monochromen LCD-Bildschirm angezeigt.


Die Elektronik dient zur Auswertung von AE-Signalen. Es können bis zu vier AE-Sensoren angeschlossen werden, jedoch wird immer nur ein Signal ausgewertet und überwacht. Verstärkung, Signalglättung, vier Auswerteschwellen, Offset und Frequenzbereiche können der jeweiligen Anwendung angepasst werden. Die Einstellungen können in 31 Sätzen gespeichert werden

Das kombinierte Gerät **AE4100-1P** verbindet die Funktionen Vorwuchten/Betriebswuchten und Prozessüberwachung miteinander. Am AE4100-1P kann ein Schwingungssensor für die Unwuchtüberwachung sowie bis zu vier AE-Sensoren angeschlossen werden.

Funktionen	AE4100-1	AE4100-2	AE4100-1P
AE-Eingang	4	4	4
AE Kanäle	1	2	1
AE Signalansicht	Kurve	Kurve	Kurve
Schleifprozessüberwachung	•	•	•
Abrichtüberwachung	•	•	•
Kontakterkennung & Reduzierung Luftschleifen	•	•	•
Crash-Überwachung	•	•	•
Schnittstelle	statische I/O	statische I/O	statische I/O
PC Software	-	-	-
Hüllkurvenfunktion	*	-	-
Schnittstelle Visualisierung	-	-	-
Display	Display	Display	Display
Zusatzfunktion	-	-	Betriebswuchten

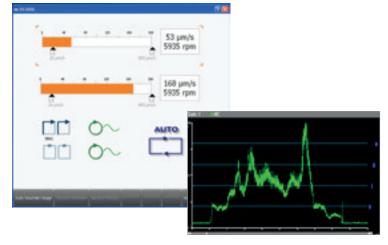
	Optionen	Montage	AE-Signalansicht	AE-Sensor
AE4100-1	1 Kanal AE			
AE4100-2	2 Kanäle AE	Kompaktgerät mit Display,	AE Kurve	alle passiven
AE4100-1P **	1 Kanal AE incl. Betriebswuchten	zusätzliche (Einbau)Rahmen	auf dem eingebauten Display	AE-Sensoren

AE6000-System

Dieses System kann zur Verkürzung der Luftschleifzeit bei Touch Dressing, Abrichtüberwachung, Schleifscheiben- und Schleifprozessüberwachung oder Kollisionsüberwachung verwendet werden. Die **AE6000** Elektronik is kompatibel zu den bisherigen Display-Geräten AE4000/AE4100 und bietet zur normalen statischen Schnittstelle noch eine Profibus Anbindung an. Das Gerät bietet zusätzlich zu den passiven Sensoren auch die Möglichkeit die zusätzlich vorverstärkten "aktiven" AE-Sensoren anzuschließen. Optimierung des Schleifund Abrichtprozesses führt zu verbesserter Werkstückqualität und höherer Wirtschaftlichkeit der Schleifmaschine.

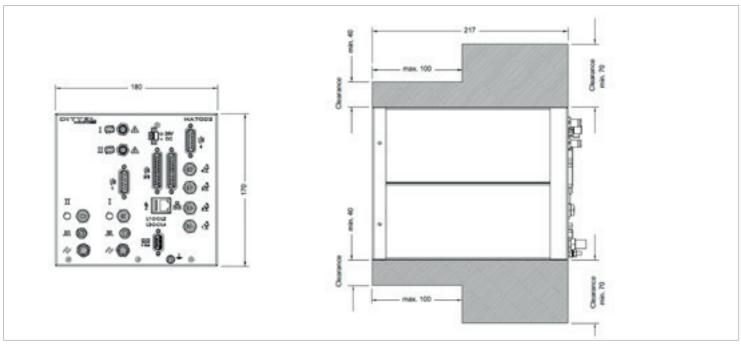
Das **DM6000** ist ein Prozessüberwachungsmodul zur Auswertung sensorbasierter und steuerungsinterner Daten. Stetig steigende Anforderungen an den Schleifprozess haben in den letzten Jahren zur Einführung neuer Technologien geführt. Voraussetzung für die Ausnutzung von Leistungsreserven mit immer größer werdenden Schnittgeschwindigkeiten ist der Einsatz geeigneter Sensorik zur Erfassung von Grenzwerten während des Schleifens und Abrichtens. Dadurch wird es möglich, vor Überschreitung von Toleranzen oder vor der Entartung des Prozesses Gegenmaßnahmen einzuleiten, ohne dass der Maschinenbediener eingreifen muss. Steuerungsinterne Daten wie beispielsweise Drehmoment werden über **Profibus** an das Modul übertragen und vom Modul überwacht. Alle Überwachungsstrategien können pro Satz flexibel den Signalquellen zugeordnet werden. AE/Crash, Spannungseingang und die Profibuseingänge sind gleichwertig und können mittels Hüllkurven überwacht werden. Bei Verwendung digitaler Antriebe kann die Prozessüberwachung ohne Sensor nur mit Hilfe steuerungsinterner Daten durchgeführt werden. Die Rückmeldung an die Steuerung erfolgt über Profibus oder statische Schnittstelle.

Funktionen	AE6000	DM6000
AE-Eingang	1 oder 4	4
AE Kanäle	1	1
AE Signalansicht	Kurve	Kurve
Schleifprozessüberwachung	•	•
Abrichtüberwachung	•	•
Kontakterkennung & Reduzierung Luftschleifen	•	•
Crash-Überwachung	•	•
Schnittstelle	statische I/O & Profibus	statische I/O & Profibus
PC Software	DSCC	DSCC
Hüllkurvenfunktion	•	•
Schnittstelle Visualisierung	RS232 & Ethernet	RS232 & Ethernet
Display	-	-


Optionen	Montage	AE-Signalansicht	AE-Sensor
AE6000, 4 AE, mit RS232 AE6001, 1 AE, mit RS232 AE6000, 4 AE, mit Ethernet AE6001, 1 AE, mit Ethernet	mit DIN-Hutschiene oder Montageplatte Blackbox-Gerät mit Visualisierung über das Windows basierte Maschinendisplay oder mit externer Fernanzeige RC6000*/PC6000	AE Kurve	alle AE-Sensoren
DM6000, 4 AE, mit RS232 DM6000, 4 AE, mit Ethernet	mit DIN-Hutschiene oder Montageplatte Blackbox-Gerät mit Visualisierung über das Windows basierte Maschinendisplay oder mit externer Fernanzeige RC6000*/PC6000	AE Kuve, Ist/Soll Parameter darstellbar	AE-Sensoren oder Maschinensignale über Profibus

DS7000 System

Speziell für den Einsatz an Präzisions-Werkzeugmaschinen entwickelt, misst das neue Auswuchtgerät M7002 die Größe und Lage der Unwucht in zwei Ebenen und kompensiert diese während der Schleifpausen hochpräzise. Die elektromechanisch verstellbaren Wuchtmassen (Auswuchtköpfe) werden durch kontaktlose Energieübertragung versorgt und das Auswuchten erfolgt vollautomatisch bei Betriebsdrehzahl.


Funktionen	DS7000- System
WB Kanäle	2
Ebenen	2
AE-Eingang	bis zu 4
AE Kanäle	2
Wuchtalgorithmus	Deterministisch
Spectrum	-
Vorwuchten (in Kombination	
mit einem Wuchtkopf)	_
Betriebswuchten	-
Acoustic Emission & Crash	•
Schnittstelle	Profibus, USB
PC Software	USCC
Schnittstelle Visualisierung	Ethernet
Display	-

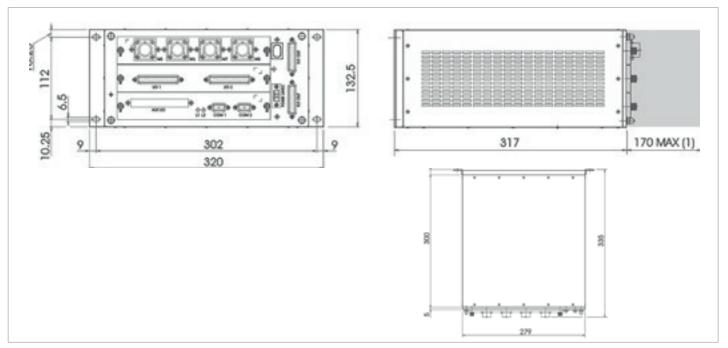
Die neu programmierte USCC (UNIFIED SYSTEM CONTROL CENTER) Software visualisiert die aufgenommen Signale vom M7002/MA7002 Gerät und zeigt diese auf der WINDOWS / LINUX basierten Steuerung an.

Das Prinzip der neuen Software erlaubt eine sehr komfortable Inbetriebnahme und ist gewohnt bedienerfreundlich.

Optionen	Montage	Modul	Signalansicht	AE-Sensor
MA7002 2-Ebenen-Wuchten mit Körperschall- überwachung (2x)	mit DIN-Hutschiene oder Montageplatte	Blackbox-Gerät mit Visualisierung auf dem Maschinendisplay	deterministisch Wuchten AE-Kurve	alle Sensoren

P7-System

Das P7 ist eine leistungsstarke Anzeige- und Verarbeitungselektronik für die flexible Durchführung von In-Process-, Pre-Process- und Post-Process-Kontrollen auf Schleifmaschinen und anderen Werkzeugmaschinen. Sie ermöglicht die Überwachung der Maschinenschwingungen, das automatische Auswuchten der Schleifscheibe und die Optimierung von Bearbeitungs- und Abrichtzyklen.


Funktionen	P7- System	
WB Kanäle	1 or 2	
Ebenen	1 or 2	
AE-Eingang	1 or 2	
AL-Lingarig	(eingebaut im Wuchtkopf)	
AE Kanäle	2 or 4	
Wuchtalgorithmus	Trial & Error	
Spectrum	•	
Vorwuchten (in Kombination		
mit einem Wuchtkopf)	_	
Betriebswuchten	•	
Acoustic Emission & Crash	•	
Schnittstelle	I/O & Profibus	
PC Software	MHIS	
Schnittstelle Visualisierung	Ethernet oder RS232	
Display	7" LCD	

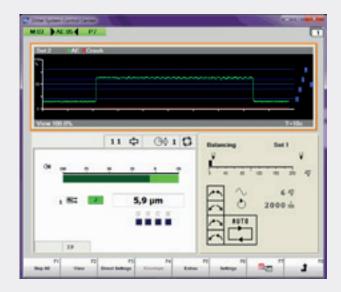
Eine gut ausgewuchtete Schleifscheibe kann die Oberflächenqualität der einzelnen Teile verbessern und die Standzeit der Spindel verlängern. Die Baureihe der Marposs-Auswuchtsysteme bieten eine optimale Lösung, um den Zustand der Schleifscheibe ständig zu überwachen und eventuelles Unwuchtverhalten während der Bearbeitung zu beseitigen.

Systeme, die imstande sind, kleinste Veränderungen während des Schleifprozesses zu erfassen, ermöglichen eine hochpräzise Kontrolle der Vorschubgeschindigkeit, wenn die Schleifscheibe das Werkstück oder den Abrichter berührt. Diese Systeme sind besonders von Vorteil, wenn Kollisionen verhindert werden sollen oder um Anomalien der Maschine oder des Werkzeugs, Absplitterungen an der Schleifscheibe und Defekte am Abrichter festzustellen.

Optionen	Mounting	Module	Transmission system	WB-Head
P7 WB Wuchten P7 SE Prozessüberwachung P7 ME Messen P7 UP UP & Retrofit	Montageplatte	Kompaktes Gerät oder Blackbox Gerät mit Visualisie- rung auf dem Maschinen- display Gehäuse oder Schaltschrank	Trial & Error AE-Kurve	FT & ST alle Sensoren

MHIS

Software Schnittstelle
Wuchten | Prozessüberwachung |
Pre-/ In-/ Post-Prozess Messen


Als Benutzeroberfläche zum P7 Gerät entwickelte Marposs die M.H.I.S. Software zur Installation und Visualisierung auf der Maschinensteuerung via RS232 oder Ethernet-Schnittstelle. Die Software wurde entwickelt für Windows-basierende Systeme (OCX) und dank seines OPC-Servers erlaubt das System den Datenaustausch zwischen dem PC/CNC und dem P7.

DSCC

Software Schnittstelle Wuchten | Prozessüberwachung mit AE

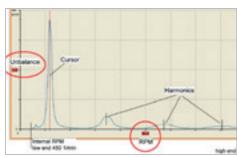
Die DSCC Software wurde für Windows-basierende Systeme entwickelt und ist einfach zu integrieren. Die Software ist frei programmierbar auf Windows-basierende Benutzeroberflächen und eine nahtlose Integration über die Programmierschnittstelle / Active-X-Steuerelemente ist möglich. Komfortable Benutzerführung, intuitive Handhabung und integrierte Onlinehilfe sowie eine Beschleunigung der Inbetriebnahme zeichnen sich als Vorteil aus. Folgende Sprachen sind verfügbar: Deutsch, Englisch, Französisch, Italienisch, Spanisch, Tschechisch

Mit der neuen Kombination aus der bekannten MHIS-Software und der DSCC-Software ist nun eine einheitliche Plattform entstanden. Diese Lösung bietet eine flexible Kombination aus Pre-, In- und Postprozessmessaufgaben sowie die Bedienung der Auswucht- und Körperschallmodule auf einer Arbeitsoberfläche.

Software eingebunden durch ActivX-Elemente

Software Wuchten

Spektrum


Softwareoption M6000/H6000: Spektrum

Die Spektrums-Funktion ist ein Hilfsmittel für den Fachmann zur Analyse des Drehzahlverhaltens von Maschinenspindeln und zur Unterscheidung zwischen maschinenbedingter Unwucht und externen Störungen. Diese Funktion erzeugt eine grafische Darstellung der Amplitude der Unwucht über einen gewählten Drehzahlbereich.

Durch diese Softwareoption führt das Auswuchtmodul eine automatische Unwuchtmessung durch und durchläuft dabei intern einen einstellbaren Drehzahl- (Frequenz-) Bereich. Das Ergebnis wird als Kurve auf dem Bildschirm dargestellt. Diese Funktion dient zum Diagnostizieren des Schwingungsverhaltens der Maschine oder zum "Aufspüren" von Umgebungsstörungen, die ungünstige Auswirkung auf den Schleifprozess haben können.

Bei drehzahlvariablen Schleifspindeloder Abrichtantrieben, kann es zum Beispiel vorkommen, dass die gewählte Drehzahl genau oder sehr nahe an der Resonanzfrequenz der Spindel liegt. Die davon herrührende Unwucht kann dann nicht mehr mit dem Wuchtsystem ausgeglichen werden.

Der zu beurteilende Drehzahlbereich variiert je nach Maschine und Prozess. Bei Schleifmaschinen mit konstanter Schnittgeschwindigkeit ist die minimale und maximale Drehzahl bekannt, der empfohlene zu untersuchende Drehzahlbereich sollte dann zwischen 0,5x min. Drehzahl und min. 2,5x max. Drehzahl liegen. Dieser Bereich ist wichtig, da er dann wahrscheinlich alle Frequenzen und Drehzahlen erfasst, die störende Beeinflussungen durch Oberwellen der Betriebsdrehzahl erzeugen.

Spektrum

Software Prozessüberwachung

Vorwuchten

Softwareoption M6000/H6000: Vorwuchten

Beim Vorwuchten / Betriebsauswuchten wird die Unwucht der Scheibe an der laufenden Maschine gemessen. Auf der Softwareoberfläche wird dem Bediener Schritt für Schritt angezeigt, was zu tun ist, z.B. auf welche Positionen die Auswuchtgewichte zu verschieben bzw. anzubringen sind. Die Anleitung und Benutzeroberfläche ist sehr bedienerfreundlich und einfach zu handhaben.

Zum Vorwuchten können folgende Methoden angewandt werden:

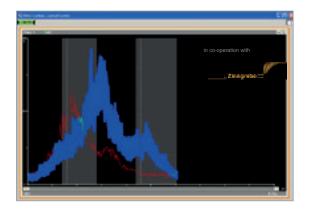
Spreizwinkelmethode:

Kompensation der Unwucht durch Verschieben von zwei gleich schweren Auswuchtgewichten (Nutensteinen) auf errechnete Positionen.

Vorwuchten mit der Spreizwinkelmethode

Festortmethode:

Kompensation der Unwucht durch Einschrauben von definierten Massen (z. B. Schrauben) an vorgegebenen Orten.



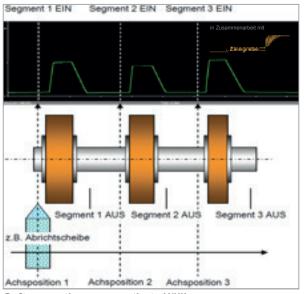
Vorwuchten mit der Festortmethode

Hüllkurve

Software Option für AE6000/DM6000: Hüllkurve

Die Hüllkurve überwacht den Prozess entweder durch zeitliche Messung und Auswertung des AE-Sensors und/oder des Spannungseingangs. Jede Unteroder Überschreitung einer eingelernten Hüllkurve während des Prozesses führt zu einer Fehlermeldung an die Maschinensteuerung. Die Hüllkurve kann sich auch auf geänderte Bedingungen einstellen. Dies geschieht entweder nach jedem Zyklus in festgelegten Grenzen (dynamische Hüllkurve) oder manuell am Bildschirm über die Computer-Maus (Editierfunktion).

Softwareoption:

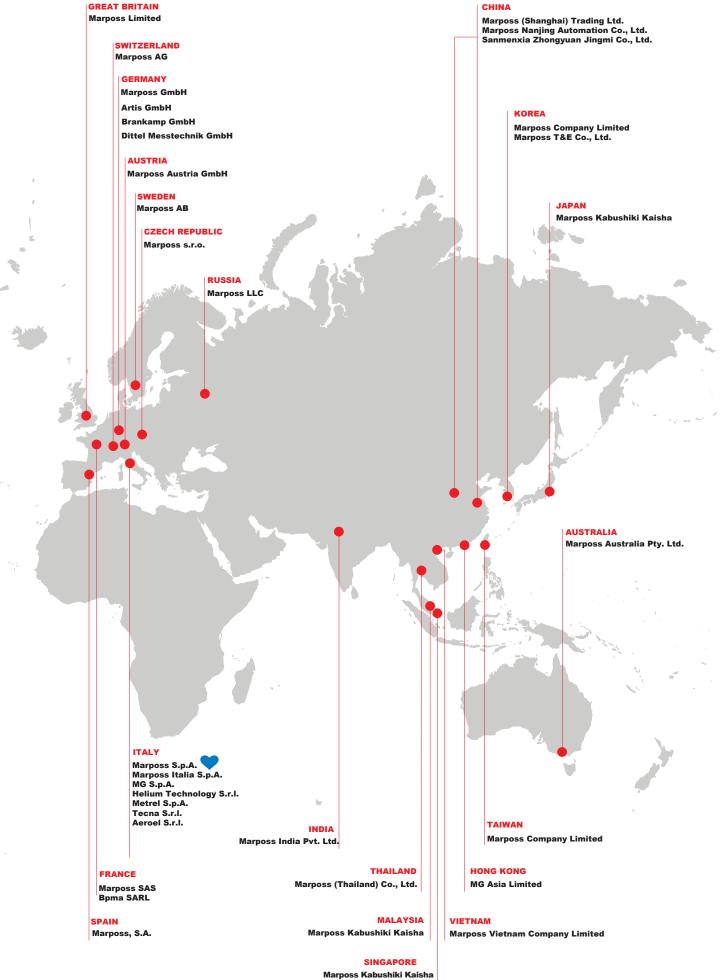

Hüllkurve abspeichern

Zusätzliches speichern der Sätze auf externem Speicherplatz möglich. Automatisches einlesen der Daten über das DM6000 - Modul ist möglich, wenn dies über die Steuerung (Programmierung Active X Steuerelement) programmiert wurde.

Softwareoption:

segmentierte Hüllkurve

Wichtige Abschnitte eines Prozessverlaufs (Segmente), können über die Maschinensteuerung eingelernt werden. Die eingelernten Segmente können von der Steuerung ausgewertet werden. Möglich ist auch, dass die Zeitachse der Hüllkurve bei jedem neuen Segment-Start mit der aktuell laufenden Überwachung neu synchronisiert wird. So kann eine Hüllkurvenüberwachung durch die Segment-Synchronisation zeitlich wieder korrigiert werden, sollte eine Störung durch unregelmäßige Achsbewegungen oder Änderungen am Override entstanden sein.



Softwareoption: segmentierte Hüllkurve

Produktion, Vertrieb und Service

Detallierte Adressen finden Sie auf unserer Homepage: www.marposs.com | www.dittel.com

DITTEL

Dittel Messtechnik GmbHErpftinger Straße 36
86899 Landsberg am Lech
Germany

Tel.: +49 (0)81 91 3351-0 info@dittel.marposs.com

Marposs in the world: www.marposs.com/addresses Visit the www.dittel.com website

